metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

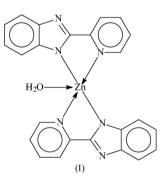
Jian-Kui Yang,^{a,b} Ming-Hua Zeng^a* and Seik Weng Ng^c

^aDepartment of Chemistry, Guangxi Normal University, Guilin 541000, Guangxi, People's Republic of China, ^bDepartment of Applied Chemistry, Hunan Agricultural University, Changsha 410128, Hunan, People's Republic of China, and ^cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: zmhzsu@163.com

Key indicators

Single-crystal X-ray study T = 295 KMean $\sigma(\text{C-C}) = 0.005 \text{ Å}$ R factor = 0.048 wR factor = 0.131 Data-to-parameter ratio = 16.2


For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Aquabis[2-(2-pyridyl)-1H-benzimidazolato]zinc(II)

In the title compound, $[Zn(C_{12}H_8N_3)_2(H_2O)]$, the Zn atom is chelated by two heterocycles, and the coordinating N atoms comprise the basal plane of the square-pyramidal environment. The apical position is occupied by an aqua ligand. The complexes are linked by $O-H \cdots O$ hydrogen bonds into a ribbon structure along the *a* axis. Received 18 April 2005 Accepted 21 April 2005 Online 30 April 2005

Comment

2-(2-Pyridyl)-1*H*-benzimidazole (Hpybim) is an organic heterocycle that possesses luminescence properties, and the present study was initiated in an investigation of this property in the zinc complex. The crystal structure of $[Zn(pybim)_2]$ as well as its electronic structure have been studied (Yue *et al.*, 2002); it is a planar compound. A search through the Cambridge Structural Database (Version 5.26; Allen, 2002) found only two metal complexes containing this ligand, *viz.* a copper(II) isothiocyanate adduct of the neutral Hpybim molecule (Battaglia *et al.*, 1976) and an yttrium(III) complex (Müller-Buschbaum & Quitmann, 2003).

The Zn atom in the present complex, (I), is chelated by the two pybim⁻ ligands. The four coordinating N atoms comprise a square plane; the coordinated water molecule occupies the apical position of the square-pyramidal geometry. The aqua ligands link adjacent complexes into a ribbon structure along the *a* axis (Fig. 2).

Experimental

Zinc nitrate hexahydrate (0.149 g, 0.5 mmol) and 2-carboxyphenoxyacetic acid (0.196 g, 1 mmol) were dissolved in ethanol (3 ml)and water (15 ml). The solution was placed in a 23 ml Teflon-lined stainless steel Parr bomb. The bomb was heated at 433 K for 120 h. The cool mixture yielded colourless crystals of (I); these were washed with water and then dried in air (yield *ca* 70%).

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Crystal data

 $[Zn(C_{12}H_8N_3)_2(H_2O)]$ $M_r = 471.81$ Monoclinic, $P2_1/c$ a = 12.5448 (8) Å b = 13.0525 (8) Å c = 13.3493 (9) Å $\beta = 102.731$ (1)° V = 2132.1 (2) Å³ Z = 4

Data collection

Bruker SMART APEX areadetector diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2001) $T_{\min} = 0.676, T_{\max} = 0.881$ 12 542 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.048$ $wR(F^2) = 0.131$ S = 1.014812 reflections 297 parameters H atoms treated by a mixture of independent and constrained refinement

Table 1

Selected geometric parameters (Å, °).

Zn1–O1w	2.001 (2)	Zn1-N4	2.002 (2)
Zn1-N1	1.989 (2)	Zn1-N6	2.245 (2)
Zn1-N3	2.239 (2)		
O1w-Zn1-N1	117.5 (1)	N1-Zn1-N4	126.9 (1)
O1w-Zn1-N3	89.1 (1)	N1-Zn1-N6	108.3 (1)
O1w-Zn1-N4	115.5 (1)	N3-Zn1-N4	99.1 (1)
O1w-Zn1-N6	85.8 (1)	N3-Zn1-N6	172.7 (1)
N1-Zn1-N3	78.7 (1)	N4-Zn1-N6	78.5 (1)
N1-C7-C8-N3	-3.1 (4)	N4-C19-C20-N6	-3.2 (3)

 $D_x = 1.470 \text{ Mg m}^{-3}$

Cell parameters from 3351

Mo $K\alpha$ radiation

reflections

 $\theta = 3.0-25.4^{\circ}$ $\mu = 1.18 \text{ mm}^{-1}$

T = 295 (2) K

 $R_{\rm int} = 0.025$

 $\theta_{\rm max} = 27.5^{\circ}$

 $h = -16 \rightarrow 16$

 $k = -10 \rightarrow 16$

 $l = -16 \rightarrow 17$

+ 0.521P]

 $(\Delta/\sigma)_{\rm max} = 0.001$

 $\Delta \rho_{\rm max} = 0.58 \ {\rm e} \ {\rm \AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.21 \text{ e} \text{ \AA}^{-3}$

Block, colourless

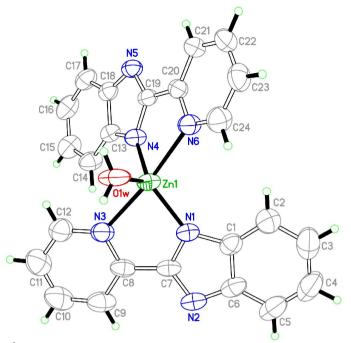
 $0.36 \times 0.18 \times 0.11 \ \mathrm{mm}$

4812 independent reflections 3727 reflections with $I > 2\sigma(I)$

 $w = 1/[\sigma^2(F_o^2) + (0.0743P)^2]$

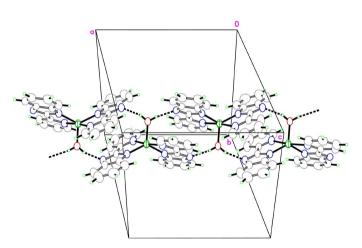
where $P = (F_o^2 + 2F_c^2)/3$

Table 2


Hydrogen-bonding	geometry ((A, °]).
------------------	------------	--------	----

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\overline{O1w-H1w1\cdots N2^{i}}$	0.85 (1)	1.90 (2)	2.713 (3)	160 (3)
$O1w - H1w2 \cdot \cdot \cdot N5^{ii}$	0.84 (1)	1.88 (1)	2.713 (3)	170 (3)
C	1 1 .	() 1 1		

Symmetry codes: (i) 2 - x, 1 - y, 1 - z; (ii) 1 - x, 1 - y, 1 - z.


The carbon-bound H atoms were positioned geometrically (C–H = 0.93 Å) and were included in the refinement in the riding-model approximation, with U_{iso} (H) values set at 1.2 times U_{eq} (C). The water H atoms were located in difference Fourier maps and refined isotropically with O–H distances restrained to 0.85 (1) Å.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEPII* (Johnson, 1976); software used to prepare material for publication: *SHELXL97*.

Figure 1

The molecular structure of (I), showing displacement ellipsoids at the 50% probability level.

Figure 2

The hydrogen-bonded (dashed lines) chain of (I) in the crystal structure.

We thank the Guangxi Normal University and the University of Malaya for supporting this study.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.

- Battaglia, L. P., Ferrari, M. B., Corradi, A. B., Fava, G. G., Pelizzi, C. & Tani, M. E. V. (1976). J. Chem. Soc. Dalton Trans. pp. 2197–2202.
- Bruker (2001). SADABS (Version 6.45), SAINT (Version 6.45) and SMART (Version 5.0). Bruker AXS Inc., Madison, Wisconsin, USA.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

Müller-Buschbaum, K. & Quitmann, C. C. (2003). *Inorg. Chem.* 42, 2742–2750. Sheldrick, G. M. (1997). *SHELXS97* and *SHELXL97*. University of Göttingen, Germany.

Yue, S.-M., Su, Z.-M., Ma, J.-F., Liao, Y., Kan, Y.-H. & Zhang, H.-J. (2002). Chin. J. Struct. Chem. 22, 174–178.